Projects : gbw-signer : gbw-signer_genesis
1 | (lambda () |
2 | |
3 | (define (repeat obj count) |
4 | (if (<= count 0) '() |
5 | (cons obj (repeat obj (- count 1))))) |
6 | |
7 | (define (fold f init l) |
8 | (do ((l l (cdr l)) |
9 | (acc init (f acc (car l)))) |
10 | ((null? l) acc))) |
11 | |
12 | (define (assert err-msg proc . args) |
13 | (if (not (apply proc args)) (error err-msg args))) |
14 | |
15 | (define fxwidth-1 (- *fixnum-width* 1)) |
16 | |
17 | ;; A fixed width integer (fz) is represented as a list of fixnum words, least significant first, wrapped in an outer list to track the width in bits. As the desired width might not be a multiple of the system's fixnum width, the low end of the low word is zero padded. (This choice allows the carry output from the high word to work naturally.) |
18 | ;; |
19 | ;; Invariant: |
20 | ;; (= (+ bits (padding bits)) (* (word-count bits) *fixnum-width*)) |
21 | |
22 | (define (word-count bits) |
23 | (quotient (+ bits fxwidth-1) *fixnum-width*)) |
24 | |
25 | (define (padding bits) |
26 | (- fxwidth-1 (modulo (- bits 1) *fixnum-width*))) |
27 | |
28 | ;; Construct a fixed width integer (FZ) |
29 | (define (make-fz bit-width words) |
30 | (assert "make-fz: bad word count for width" |
31 | = (length words) (word-count bit-width)) |
32 | (list bit-width words)) |
33 | |
34 | ;; FZ accessors |
35 | (define fz-width car) |
36 | (define fz-words cadr) |
37 | (define (fz-unpack a consumer) (apply consumer a)) |
38 | |
39 | ;; "Press": construct FZ from reverse-accumulated words, zeroing the pad bits |
40 | (define (press-fz bit-width rev-words) |
41 | (let* ((p (padding bit-width)) |
42 | (head (fxshift/unsigned (fxshift (car rev-words) p) (- p)))) |
43 | (make-fz bit-width (reverse (cons head (cdr rev-words)))))) |
44 | |
45 | (define (fz0 width) |
46 | (make-fz width (repeat 0 (word-count width)))) |
47 | |
48 | (define (word->ufz width w) |
49 | (make-fz width (cons w (repeat 0 (- (word-count width) 1))))) |
50 | |
51 | (define (ufz+/pair a b) |
52 | (let ((width (fz-width a))) |
53 | (assert "ufz+: unequal width" = width (fz-width b)) |
54 | (let loop ((a (fz-words a)) (b (fz-words b)) (carry 0) (acc '())) |
55 | (if (null? a) (press-fz width acc) |
56 | (call-with-values |
57 | (lambda () (fx+/carry-unsigned (car a) (car b) carry)) |
58 | (lambda (sum carry) |
59 | (loop (cdr a) (cdr b) carry (cons sum acc)))))))) |
60 | |
61 | ;; !! UNTESTED !! |
62 | ;(define (ufz-/pair a b) |
63 | ; (let ((width (fz-width a))) |
64 | ; (assert "ufz-: unequal width" = width (fz-width b)) |
65 | ; (let loop ((a (fz-words a)) (b (fz-words b)) (carry 0) (acc '())) |
66 | ; (if (null? a) (press-fz width acc) |
67 | ; (call-with-values |
68 | ; (lambda () (fx-/carry-unsigned (car a) (car b) carry)) |
69 | ; (lambda (diff carry) |
70 | ; (loop (cdr a) (cdr b) carry (cons diff acc)))))))) |
71 | |
72 | (define (ufz+ a . args) (fold ufz+/pair a args)) |
73 | |
74 | ;; Positive (left) shift: signedness doesn't matter. |
75 | ;; Assumes 0 < bits < width. |
76 | ;; Constant time w.r.t. words only (NOT bits). |
77 | (define (shift width words bits) |
78 | (let ((whole-words (quotient bits *fixnum-width*)) |
79 | (bits (remainder bits *fixnum-width*))) |
80 | (let ((carry-shift (- bits *fixnum-width*))) |
81 | (do ((words words (cdr words)) |
82 | (carry 0 (fxshift/unsigned (car words) carry-shift)) |
83 | (acc (repeat 0 whole-words) |
84 | (cons (fxior (fxshift (car words) bits) carry) acc)) |
85 | (todo (- (word-count width) whole-words) (- todo 1))) |
86 | ((zero? todo) (press-fz width acc)))))) |
87 | |
88 | ;; Negative (right) shift without sign extension. |
89 | ;; Assumes 0 < bits < width. |
90 | ;; Constant time w.r.t. words only (NOT bits). |
91 | (define (unshift-unsigned width words bits) |
92 | (let ((whole-words (quotient bits *fixnum-width*)) |
93 | (bits (- (remainder bits *fixnum-width*)))) |
94 | (let ((carry-shift (+ bits *fixnum-width*))) |
95 | (do ((words (reverse (list-tail words whole-words)) (cdr words)) |
96 | (carry 0 (fxshift (car words) carry-shift)) |
97 | (acc (repeat 0 whole-words) |
98 | (cons (fxior (fxshift/unsigned (car words) bits) carry) |
99 | acc))) |
100 | ((null? words) (make-fz width acc)))))) |
101 | |
102 | ;; Front-end for unsigned shifts. |
103 | ;; Constant time w.r.t. FZ value only (NOT bits). |
104 | (define (ufzshift a bits) |
105 | (fz-unpack |
106 | a (lambda (width words) |
107 | (cond ((zero? bits) a) |
108 | ((>= (abs bits) width) (fz0 width)) |
109 | ((positive? bits) (shift width words bits)) |
110 | (else (unshift-unsigned width words (- bits))))))) |
111 | |
112 | ;; Bit rotation: signedness doesn't matter. |
113 | ;; Rotates to the "left" i.e. more-significant, but can take negative bits. |
114 | ;; Constant time w.r.t. FZ value only (NOT bits). |
115 | (define (fzrot a bits) |
116 | (fz-unpack |
117 | a (lambda (width words) |
118 | (let ((bits (modulo bits width))) |
119 | (if (zero? bits) a |
120 | (fzior (shift width words bits) |
121 | (unshift-unsigned width words (- width bits)))))))) |
122 | |
123 | (define (fznot a) |
124 | (fz-unpack a (lambda (width a) (press-fz width (reverse (map fxnot a)))))) |
125 | |
126 | ;; Build new FZ by mapping func across corresponding words of each input. |
127 | ;; Assumes func preserves zero padding. |
128 | (define (fzmap func a . tail) |
129 | (let ((width (fz-width a))) |
130 | (if (not (apply = width (map fz-width tail))) |
131 | (error "fzmap: unequal widths")) |
132 | (make-fz width (apply map func (fz-words a) (map fz-words tail))))) |
133 | |
134 | (define (fzand . args) (apply fzmap fxand args)) |
135 | (define (fzior . args) (apply fzmap fxior args)) |
136 | (define (fzxor . args) (apply fzmap fxxor args)) |
137 | (define (fzif a b c) (fzmap fxif a b c)) |
138 | (define (fzmaj a b c) (fzmap fxmaj a b c)) |
139 | |
140 | ;;; FZ to octet string I/O, big and little endian. |
141 | ;;; Complicated due to non-aligned fixnum width, but linear time. |
142 | |
143 | ;; Construct (* 8 (string-length BUF)) bit wide FZ from the octets in BUF. |
144 | (define (bytes->fz buf big-endian) |
145 | (let* ((nbytes (string-length buf)) |
146 | (get-char (if big-endian |
147 | (lambda (k) (string-ref buf (- nbytes 1 k))) |
148 | (lambda (k) (string-ref buf k))))) |
149 | (let loop ((bit-pos 0) (k 0) (word 0) (words '())) |
150 | (if (= k nbytes) (make-fz (fxshift nbytes 3) |
151 | (reverse (cons word words))) |
152 | (let ((byte (char->integer (get-char k)))) |
153 | (let ((bit-pos (+ bit-pos 8)) |
154 | (k (+ k 1)) |
155 | (word (fxior word (fxshift byte bit-pos)))) |
156 | (if (<= bit-pos *fixnum-width*) |
157 | ;; whole byte fits in current word |
158 | (loop bit-pos k word words) |
159 | ;; else spill to next word |
160 | (let ((carry-bits (- bit-pos *fixnum-width*))) |
161 | (loop carry-bits k (fxshift/unsigned byte (- carry-bits 8)) |
162 | (cons word words)))))))))) |
163 | |
164 | (define (lsb->char word) |
165 | (integer->char (fxand word 255))) |
166 | |
167 | ;; Construct octet string from a multiple-of-8 bit wide FZ. |
168 | (define (fz->bytes a big-endian) |
169 | (fz-unpack |
170 | a (lambda (width words) |
171 | (if (not (zero? (fxand width 7))) |
172 | (error "fz->bytes: width not divisible by 8:" width)) |
173 | (let* ((nbytes (fxshift width -3)) |
174 | (buf (make-string nbytes)) |
175 | (set-byte! |
176 | (if big-endian |
177 | (lambda (k b) (string-set! buf (- nbytes 1 k) |
178 | (lsb->char b))) |
179 | (lambda (k b) (string-set! buf k (lsb->char b)))))) |
180 | (let loop ((bit-pos 0) (k 0) (word (car words)) |
181 | (words (cdr words))) |
182 | (if (= k nbytes) buf |
183 | (let ((byte (fxshift/unsigned word (- bit-pos))) |
184 | (bit-pos (+ bit-pos 8))) |
185 | (if (<= bit-pos *fixnum-width*) |
186 | ;; whole byte contained in current word |
187 | (begin (set-byte! k byte) |
188 | (loop bit-pos (+ k 1) word words)) |
189 | ;; else fill in from next word |
190 | (let ((word (car words)) |
191 | (peek (- bit-pos *fixnum-width*))) |
192 | (set-byte! k (fxior byte (fxshift word (- 8 peek)))) |
193 | (loop peek (+ k 1) word (cdr words))))))))))) |
194 | |
195 | ;;; Constant time word comparison predicates, returning 0 or 1 |
196 | |
197 | (define (uword<? a b) |
198 | (call-with-values (lambda () (fx-/borrow-unsigned a b)) |
199 | (lambda (diff carry) carry))) |
200 | |
201 | (define (uword<=? a b) |
202 | (fxxor 1 (uword<? b a))) |
203 | |
204 | (define (word=? a b) |
205 | (fxand (uword<=? a b) (uword<=? b a))) |
206 | |
207 | ;; Constant time mux returning: |
208 | ;; a | select=0 |
209 | ;; b | select=1 |
210 | (define (word-mux select a b) |
211 | (fxif (fx-/wrap select) b a)) |
212 | |
213 | ;;; Constant time hex conversion (with respect to valid, fixed size input) |
214 | |
215 | (define num-lo (- (char->integer #\0) 1)) |
216 | (define num-hi (+ (char->integer #\9) 1)) |
217 | (define num-0 (char->integer #\0)) |
218 | (define uc-lo (- (char->integer #\A) 1)) |
219 | (define uc-hi (+ (char->integer #\F) 1)) |
220 | (define lc-lo (- (char->integer #\a) 1)) |
221 | (define lc-hi (+ (char->integer #\f) 1)) |
222 | (define uc-a-10 (- (char->integer #\A) 10)) |
223 | (define lc-a-10 (- (char->integer #\a) 10)) |
224 | |
225 | (define (hexdigit->integer d) |
226 | (let ((i (char->integer d))) |
227 | (let ((num (fxand (uword<? num-lo i) (uword<? i num-hi))) |
228 | (uc (fxand (uword<? uc-lo i) (uword<? i uc-hi))) |
229 | (lc (fxand (uword<? lc-lo i) (uword<? i lc-hi)))) |
230 | (if (zero? (fxior num uc lc)) (error "bad hex digit:" d)) |
231 | (fxior (fxand (fx-/wrap num) (fx-/wrap i num-0)) |
232 | (fxand (fx-/wrap uc) (fx-/wrap i uc-a-10)) |
233 | (fxand (fx-/wrap lc) (fx-/wrap i lc-a-10)))))) |
234 | |
235 | ;; Assumes valid input (0-16) |
236 | (define (integer->hexdigit i) |
237 | (integer->char (fx+/wrap i (word-mux (uword<? i 10) lc-a-10 num-0)))) |
238 | |
239 | (define (hex->bytes h) |
240 | (let* ((len (quotient (+ (string-length h) 1) 2)) |
241 | (bytes (make-string len))) |
242 | (define (loop i j) |
243 | (if (= i len) bytes |
244 | (let ((hi (string-ref h j)) (lo (string-ref h (+ j 1)))) |
245 | (string-set! bytes i |
246 | (integer->char |
247 | (fxior (fxshift (hexdigit->integer hi) 4) |
248 | (hexdigit->integer lo)))) |
249 | (loop (+ i 1) (+ j 2))))) |
250 | (if (even? (string-length h)) (loop 0 0) |
251 | (begin (string-set! bytes 0 (integer->char (hexdigit->integer |
252 | (string-ref h 0)))) |
253 | (loop 1 1))))) |
254 | |
255 | (define (bytes->hex b) |
256 | (let* ((len (string-length b)) |
257 | (h (make-string (* 2 len)))) |
258 | (do ((i 0 (+ i 1)) |
259 | (j 0 (+ j 2))) ((= i len) h) |
260 | (let ((byte (char->integer (string-ref b i)))) |
261 | (string-set! h j (integer->hexdigit (fxshift/unsigned byte -4))) |
262 | (string-set! h (+ j 1) (integer->hexdigit (fxand byte 15))))))) |
263 | |
264 | ;; Shortcuts, favoring big-endianism as the conventional digit order in writing and in the intrabyte order of hex encoding. |
265 | (define (fz->hex a) (bytes->hex (fz->bytes a #t))) |
266 | (define (hex->fz a) (bytes->fz (hex->bytes a) #t)) |
267 | |
268 | (export fz0 word->ufz ufz+ ufzshift fzrot fznot fzand fzior fzxor fzif |
269 | fzmaj bytes->fz fz->bytes hexdigit->integer hex->bytes bytes->hex |
270 | fz->hex hex->fz)) |